

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Mathematics-III		
Title of the Unit: Laplace Transform	Unit No:-	I

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	If $f(t) = t^n$ where, 'n' is an integer greater than zero, then its Laplace Transform is given by a) n! b) t^{n+1} c) n! / s^{n+1} d) Does not exist	1
2	Laplace transform of $t^m e^{bt}$ is $A] \frac{\sqrt{m}}{(s+b)^m} B] \frac{\sqrt{(m+1)}}{(s-b)^{m+1}} C] \frac{(m+1)!}{(s+b)^{m+1}} D] \frac{m!}{(s-b)^m}$	1
3	L { $te^{-t}Cos 2t$ } is equal to A] $\frac{s^2+2s+5}{(s^2+2s-3)^2}$ B] $\frac{s^2-2s+5}{(s^2+2s-3)^2}$ C] $\frac{s^2+2s-5}{(s^2+2s-3)^2}$ D] None of these	1
4	Laplace transform of $[t.u(t-2)]$ is A] $\frac{1}{s^2}e^{-2s}$ B] $\left(\frac{1}{s^2}-\frac{2}{s}\right)e^{-2s}$ C] $\left(\frac{1}{s^2}+\frac{2}{s}\right)e^{-2s}$ D] $\frac{2e^{-2s}}{s}$	1
5	Laplace transform of $\iiint_0^t \cos au du du$ is given as A] $\frac{1}{s^2(s^2+a^2)}$ B] $\frac{1}{s(s^22+a^2)}$ C] $\frac{1}{s^2(s+a)}$ D] None of these	1
6	Laplace transform of t sin t is A] $\frac{2s}{(s^2+1)^2}$ B] $\frac{s}{(s^2+1)^2}$ C] $\frac{2s}{(s^2-1)^2}$ D] None of these	1
7	L { $\delta(t)$ } is equal to	1

	Al 0 Bl ∞ Cle ^{-as} Dl 1	
		1
_	$L \{4^{*}\}$ is equal to	1
8	$Al = \frac{1}{2}$ $Dl = \frac{1}{2}$ $Cl = \frac{1}{2}$ $Dl Norro of these$	
	AJ $\frac{1}{s-\log 4}$ BJ $\frac{1}{s+\log 4}$ CJ $\frac{1}{s\log 4}$ DJ None of these	
		1
0	Laplace transform of $\sin 2t \delta(t-2)$ is	1
9	Al $a^{2s} \sin 4$ Bl $a^{-2s} \sin 2$ Cl $a^{-4s} \sin 2$ Dl Nope of these	
	$A_j \epsilon \sin 4$ $B_j \epsilon \sin 2$ $C_j \epsilon \sin 2$ D_j Note of these	
	Laplace transform of te ^{at} sin at is	1
10		
10	A] $\frac{s-a}{(s-a)^2+a^2}$ B] $\frac{2s(s-a)}{[(s-a)^2+a^2]^2}$ C] $\frac{2a}{(s-a)^2+a^2}$ D] $\frac{2a(s-a)}{[(s-a)^2+a^2]^2}$	
	$(s-a)^{-+}a^{-}$ $[(s-a)^{-+}a^{-}]^{-}$ $(s-a)^{++}a^{-}$ $[(s-a)^{-+}a^{-}]^{-}$	
	Short Answer Question	1
	-	
Question	Question Description	Expected
No.		Marks
1	, [1-cost]	2
1	Find $L\left[\frac{t}{t}\right]$	-
	[cosat-coabt]	2
2	Find $L \begin{bmatrix} t \\ t \end{bmatrix}$	
	$\left[\sin^2 2t\right]$	2
3	Find $L\left[\frac{dH}{t^2}\right]$	<u> </u>
4	Find $L \left \frac{1-s^{-1}}{s} \right $	2
5	If $L\left[\operatorname{erf}(\sqrt{t})\right] = \frac{1}{\sqrt{t}}$ Then Find (i) $L\left[\operatorname{erf}(2\sqrt{t})\right](ii) L\left[\operatorname{t.erf}(2\sqrt{t})\right]$	2
	SVST1	
6	Find $L\left[\frac{d}{d}\left(\frac{sint}{d}\right)\right]$	2
	$\frac{1}{ dt } = \frac{ dt }{ t }$	
7	Find $L \left \frac{d}{dt} \left(e^{-5t} sint \right) \right $	2
8	Find $L\left[e^{-t},\int_{0}^{t}\left(\frac{\sin t}{t}\right)dt\right]$	2
9	Find $L\left[\int_{-t}^{t} t^{3} e^{-4t} dt\right]$	2
1	at in a	2
10	Find $L \left \int_{0}^{t} t e^{-4t} \sin 3t dt \right $	<u> </u>

Long Answer Question

Question No.	Question Description	Expected Marks
1	Evaluate $\int_0^\infty \frac{e^{-t}(1-\cos 2t)}{2t} dt$	5
2	Evaluate $\int_0^\infty e^{-t} \int_0^t \left(\frac{\sin y}{y}\right) dy. dt$	5
3	Evaluate $\int_0^\infty \left(\frac{e^{-t}-e^{-st}}{t}\right) dt$	5
4	Find L.T. of $f(t) = t$, $0 \ll t \lt \lt C$ Where $F(t)$ is periodic with	5
	$= 2C - t$, $C \ll t < 2C$ period 2C.	
5	Find Laplace Transform of $f(t) = sinpt $	5
6	Find L.T. of $f(t) = sin\left(\frac{\pi t}{a}\right)$, $0 < t < T$ Where F(t) is periodic & period T.	5
7	Evaluate $\int_0^\infty e^{-t} \int_0^t \left(\frac{\sin y}{y}\right) dy. dt$	5
8	Evaluate $\int_0^\infty \left(\frac{e^{-t}-e^{-st}}{t}\right) dt$	5
	Express $f(t)$ in term of Heaviside unit step Heaviside, & Find Laplace transform.	5
0	1] $f(t) = sint , 0 < t < \pi$	
9	$= \sin 2t$, $0 < t < \pi$	
	$=$ sin3t , t >2 π	
	Express $f(t)$ in term of Heaviside unit step Heaviside, & Find Laplace	5
10	transform. $f(t) = e^t cost \qquad 0 < t < \pi$	
	$=e^t sint$, $t > \pi$	

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Mathematics-III		
Title of the Unit: Inverse Laplace Transform	Unit No:-	II

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	$L^{-1} \left\{ \frac{1}{(s+a)^2} \right\} \text{ is equal to}$ A] t e^{-at} B] t e^{at} C] -t e^{-at} D] -t e^{at}	1
2	$L^{-1} \left\{ \frac{1}{s(s^2+1)} \right\} \text{ is equal to}$ A] 1 + Cos t B] 2 - Cos t C] 1 - Cos t D] 1 - sin t	1
3	Inverse Laplace transform of 1 is A] $\delta(t)$ B] u(t) C] $\delta(t-1)$ D] u(t-1)	1
4	The Inverse Laplace transform of $\log \left(\frac{s+1}{s-1}\right)$ is given by A] $\frac{2}{t}$ cosht B] $\frac{2}{t}$ sinht C] 2 t Cost D] 2 t sin t	1
5	The inverse Laplace transform of $\frac{1}{(s+2)^2}$ is equal to A] t e^{-2t} B] t e^{-t} C] e^{-2t} D] None of these	1
6	Inverse Laplace transform of $\frac{1}{s^2+4s+13}$ is equal to A] $\frac{1}{3}e^{-2t} \sin 3t$ B] $\frac{1}{3}e^{2t} \sin 3t$ C] $e^{-2t} \sin 3t$ D] None of these	1

	$L^{-1}\left\{\frac{1}{(s+3)^5}\right\}$ is equal to	1
7	A] $\frac{e^{-8t}t^4}{24}$ B] $\frac{e^{8t}t^4}{24}$ C] $e^{-3t}t^4$ D] None of these	
0	$L^{-1}\left\{\frac{1}{s^n}\right\}$ is possible only when n is	1
δ	A] Zero B] –ve integer C] +ve integer D] None of these	
	$L^{-1}\left\{\frac{1}{\sqrt{s+3}}\right\}$ is equal to	1
9	A] $\frac{e^{-\mathfrak{s}t}}{\sqrt{\pi t}}$ B] $\frac{e^{\mathfrak{s}t}}{\sqrt{\pi t}}$ C] $\frac{e^{-\mathfrak{s}t}}{\pi t}$ D] None of these	
10	$L^{-1}\{e^{-as}f(s)\}$ is equal to	1
10	A] $f(t) u(t)$ B] $f(t-a) u(t)$ C] $f(t-a) u(t-a)$ D] None of these	
	Short Answer Question	
Question	Orregtion Description	Expected
No.	Question Description	Marks
1	Using first shifting theorem find $L^{-1}\left\{\frac{1}{(s+5)^2}\right\}$.	2
2	Find inverse Laplace transform of $\frac{s}{2s^2-1}$.	2
3	Find inverse Laplace transform of $\frac{s}{s^2+1}$.	2
4	Find $L^{-1}\left\{\frac{1}{s(s+1)}\right\}$	2
5	Find the inverse Laplace transform of $\frac{1}{s^2+4s+10}$	2
6	Find $L^{-1}\left\{\frac{1}{s(s-1)}\right\}$	2
7	By convolution theorem $L^{-1} \{f(s), g(s)\} =$	2
8	Find Inverse Laplace transform of $\frac{1}{(s+2)(s-1)}$	2
	Solve $\frac{dy}{dx} + y = 0$, $y(0) = 1$	2
9		
10	Solve $\frac{dy}{dt} + 3y = t$, $y(0) = 2$	2

Long Answer Question		
Question No.	Question Description	Expected Marks
1	$\operatorname{Find} L^{-1}\left\{\log \frac{s(s+1)}{s^2+4}\right\}$	5
2	solve the equation by transform method; $\frac{dy}{dt} + 2y + \int_0^1 y dt = sint \text{ Where } y(0) = 0 , y'(0) = 1$	5
3	Find $L^{-1}\left\{\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right\}$	5
4	Using convolution theorem find $L^{-1}\left\{\frac{s^2}{(s^2+4)^2}\right\}$.	5
5	Find the inverse Laplace transform of $\frac{s^3+6s^2+14s}{(s+2)^4}$	5
6	Find the inverse Laplace transform of $\frac{s+1}{s(s^2+2s+2)}$	5
7	Solve the following differential equation by Laplace transform method $\frac{d^{2y}}{dx^{2}} - 2\frac{dy}{dx} + y = e^{x}, \text{ under condition } y = 2 \text{ and } \frac{dy}{dx} = -1 \text{ at } x = 0$	5
8	Solve $\frac{d^2y}{dx^2} + y = 3\cos 2x$ given that, $y(0) = 0, y'(0) = -2$.	5
9	Solve the linear differential equation by Laplace transform $(D^2 + 4D + 13)y = 2\delta(t)$ Given that, $t = 0, x = 2$, $\frac{dx}{dt} = 0$	5
10	Solve $\frac{dx}{dt} + y = sint$, $\frac{dy}{dt} + x = cost$ where $x(0) = 0, y(0) = 2$	5

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Mathematics-III		
Title of the Unit: Fourier Transform	Unit No:-	III

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	The Fourier cosine transform of the function $f(t)$ is A] $F_{c}(s) = \int_{0}^{\infty} f(t) \cos st dt$ B] $F_{c}(s) = \int_{0}^{\infty} f(t) \cos t dt$ C] $F_{c}(s) = \int_{0}^{\infty} f(st) \cos t dt$ D] None of these	1
2	The Fourier Cosine transform of $\frac{1}{x}$ is A] $\frac{s^2}{2}$ B] $\frac{s^2}{3}$ C] $\frac{s}{2}$ D] None of these	1
3	The Fourier transform of $f(x)$ is $f(s)$, then the inversion formula is A] $f(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(s) e^{-isx} ds$ B] $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) e^{-isx} ds$ C] $f(x) = \frac{1}{2\pi} \int_{0}^{\infty} f(s) e^{-isx} ds$ D] None of these	1
4	If $F[f(x)] = (s)$, then $F[f(x - a)]$ is equal to A] $e^{isa} f(s)$ B] $e^{-isa} f(s)$ C] $e^{ist} f(s)$ D] None of these	1
5	If Fc $\{f(ax)\} = K \operatorname{Fc}\left(\frac{s}{a}\right)$, then K is equal to	1

	A] $\frac{2}{a}$ B] $\frac{1}{a}$ C] a D] None of these	
	Fourier transform of the second derivative of $u(x,t)$ is equal to	1
6	A] $s^2 f(u)$ B]- $s^2 f(u)$ C] $s f(u)$ D] None of these	_
	Fourier transform is a linear combination, is	1
7	A] True B] False C] None of these	
0	The kernel of Fourier transform is e^{sx} , is	1
δ	A] True B] False C] None of these	
	The finite Fourier cosine transform of $f(x) = 1$ in $(0, \pi)$ is zero, is	1
9	A] True B] False C] None of these	
	The Fourier Cosine transform of e^{-x} is	1
10	A] $\frac{s}{s^2+1}$ B] $\frac{s}{s^2-1}$ C] $\frac{1}{s^2+1}$ D] None of these	
	Short Answer Question	1
Question No.	Question Description	Expected Marks
Question No.	Question Description Using Fourier integral representations, Show that, $\int_0^\infty \frac{\omega \sin x\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x} (x > 0)$	Expected Marks 2
Question No. 1 2	Question DescriptionUsing Fourier integral representations, Show that, $\int_0^\infty \frac{\omega \sin x \omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x} (x > 0)$ Using Fourier integral representations, Show that, $\int_0^\infty \frac{\cos x \omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x} (x \ge 0)$	Expected Marks 2 2
Question No. 1 2 3	Question DescriptionUsing Fourier integral representations, Show that, $\int_0^\infty \frac{\omega \sin x \omega}{1 + \omega^2} d\omega = \frac{\pi}{2} e^{-x}$ (x > 0)Using Fourier integral representations, Show that, $\int_0^\infty \frac{\cos x \omega}{1 + \omega^2} d\omega = \frac{\pi}{2} e^{-x}$ (x ≥ 0)Find Fourier transform of $f(x) = \frac{1}{0}$, for $ x < 1$ Hence evaluate that $\int_0^\infty \frac{\sin x}{x} dx.$	Expected Marks 2 2 2 2
Question No. 1 2 3 4	Question DescriptionUsing Fourier integral representations, Show that, $\int_0^\infty \frac{\omega \sin x\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}$ ($x > 0$)Using Fourier integral representations, Show that, $\int_0^\infty \frac{\cos x\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}$ ($x \ge 0$)Find Fourier transform of $f(x) = \frac{1}{0}$, for $ x < 1$ Hence evaluate that $\int_0^\infty \frac{\sin x}{x} dx$.Find the Fourier Cosine transform of e^{-x^2}	Expected Marks 2 2 2 2 2 2 2
Question No. 1 2 3 4 5	Question DescriptionUsing Fourier integral representations, Show that, $\int_0^\infty \frac{\omega sinx\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x} (x > 0)$ Using Fourier integral representations, Show that, $\int_0^\infty \frac{cosx\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x} (x \ge 0)$ Find Fourier transform of $f(x) = \frac{1}{0}$, for $ x < 1$ Hence evaluate that $\int_0^\infty \frac{Sinx}{x} dx$.Find the Fourier Cosine transform of e^{-x^2} Find the Fourier sine transform of $\frac{e^{-ax}}{x}$	Expected Marks 2 2 2 2 2 2 2
Question No. 1 2 3 4 5 6	Question DescriptionUsing Fourier integral representations, Show that, $\int_0^\infty \frac{\omega \sin x\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}$ $(x > 0)$ Using Fourier integral representations, Show that, $\int_0^\infty \frac{\cos x\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}$ $(x \ge 0)$ Find Fourier transform of $f(x) = \frac{1}{0}$, for $ x < 1$ Hence evaluate that $\int_0^\infty \frac{\sin x}{x} dx$.Find the Fourier Cosine transform of e^{-x^2} Find the Fourier sine transform of $e^{- x }$, and hence show that $\int_0^\infty \frac{x \sin x\omega}{1+x^2} dx = \frac{\pi}{2}e^{-m}$ $(m > 0)$	Expected Marks 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Question No. 1 2 3 4 5 6 7	Question Description Using Fourier integral representations, Show that, $\int_0^\infty \frac{\omega \sin x\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}$ $(x > 0)$ Using Fourier integral representations, Show that, $\int_0^\infty \frac{\cos x\omega}{1+\omega^2} d\omega = \frac{\pi}{2}e^{-x}$ $(x \ge 0)$ Find Fourier transform of $f(x) = \frac{1}{0}$, for $ x < 1$ Hence evaluate that $\int_0^\infty \frac{\sin x}{x} dx$. Find the Fourier Cosine transform of e^{-x^2} Find the Fourier sine transform of $e^{- x }$, and hence show that $\int_0^\infty \frac{x \sin x}{1+x^2} dx = \frac{\pi}{2}e^{-m}$ $(m > 0)$ Find the Fourier cosine and Sine transform of $f(x) = 2x$, $0 < x < 4$.	Expected Marks 2 2 2 2 2 2 2 2 2 2 2

9	Using Parseval's identity, prove that $\int_0^\infty \frac{t^2}{(t^2+1)^2} dt = \frac{\pi}{4}$.	2
10	Using Parseval's identity, prove that $\int_0^\infty \frac{\sin at}{t(t^2+a^2)^2} dt = \frac{\pi}{2} \left(\frac{1-e^{-a^2}}{a^2} \right).$	2

Long Answer Question		
Question No.	Question Description	Expected Marks
1	Find the finite Fourier Cosine & Sine transform of $f(x) = \frac{-x}{\pi - x}$, for $x < c$, where $0 \le c \le \pi$.	5
2	Using Parseval's identity, prove that $\int_0^\infty \frac{t^2}{(4+t^2)(9+t^2)} dt = \frac{\pi}{10}$.	5
3	Find the Fourier transform of $f(x) = \frac{1 - x^2}{0}$, for $ x \le 1$ for $ x > 1$. Hence evaluate that $\int_0^\infty \left(\frac{x Cosx - Sinx}{x^3}\right) Cos \frac{x}{2} dx$.	5
4	Using Fourier integral representations, Show that, $\int_0^\infty \frac{\sin\omega Cosx\omega}{\omega} d\omega = \frac{\pi}{2} (0 \le x < 1)$	5
5	Evaluate the integral $\int_0^\infty \left(\frac{1-Cosx}{x}\right)^2 dx.$	5
6	Find Fourier transform of $f(x) = \frac{a - x }{0}$, $\frac{ x < a}{ x > a > 0}$. Also Show that $\int_0^\infty \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2}$.	5
7	Find the Fourier Cosine transform of $e^{\frac{-x^2}{2}}$	5
8	Find the Fourier transform of $f(x) = \frac{a^2 - x^2}{0}$, for $ x < a$ for $ x > a > 0$. Hence evaluate that $\int_0^\infty \left(\frac{Sinx - xCosx}{x^3}\right) dx = \frac{\pi}{4}$.	5
9	Find the Fourier Cosine and Sine transform of $f(x) = e^{-ax}$, $a > 0$.	5
10	Find the Fourier Sine transform of $f(x) = 2 - x$, $1 < x < 2$. 0, $x > 2$	5

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Mathematics-III		
Title of the Unit: Partial Differential Equation & its Application	Unit No:-	IV

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	The solution of the partial differential equation $r - t = 0$ is A] $z = f(x^2 + y^2)$ B] $z = f1(y + x) + f2(y - x)$ C] $z = f1(y + x) + f2(y - 2x)$ D] None	1
2	The solution of $\frac{\partial^4 z}{\partial x^4}$ is A] $z = f1(y) + xf2(y) + x^2f3(y) + x^3f4(y)$ B] $z = f1(x) + yf2(x) + y^2f3(y) + y^3f4(y)$ C] $z = f1(x) - yf2(x) + y^2f3(y) + y^3f4(y)$ D] None of these	1
3	Particular integral of $(D^2 - D'^2) z = \cos(x + y)$ is A] $\frac{x}{2} \cos(x + y)$ B] $x \sin(x + y)$ C] $\frac{x}{2} \sin(x + y)$ D] None of these	1
4	The equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$ is A] Parabolic B] Elliptic C] Hyperbolic D] None of these	1
5	The solution of $(D^2 - DD') Z = 0$ is A] $z = f1(x) + f2(y - x)$ B] $z = f1(y) + f2(y - x)$ C] $z = f1(y) + f2(x)$	1

	D] None	
	The solution of $m + m - z$ is	1
6	The solution of $xp + yp - 2$ is	
	A] $f(x,y) = 0$ B] $f\left(\frac{x}{y}, \frac{y}{z}\right) = 0$ C] $f(xy, yz) = 0$ D] None	
	The solution of $\frac{\partial^{s} z}{\partial x^{s}}$ is	1
7	A] $z = f1(y) + xf2(y) + x^2f3(y)$ B] $z = (1 + x + x^2)f(y)$	
	C] $z = f1(x) + xf2(x) + y^2f3(x)$ D] $z = (1 + y + y^2)f(x)$	
	The complementary function of $(D^2 - 4DD' + 4D'^2) z = (x + y)$ is	1
Q	Al $z = f1(y + 2x) + xf2(y + 2x)$ Bl $z = f1(y + x) + xf2(y + x)$	
0	$\mathbf{A} = \mathbf{A} = $	
	C] $z = f1(x + 2y) + xf2(x + 2y)$ D] None	
0	The particular integral of $(D^2 + DD') z = Sin(x + y)$ is	1
9	A] $-\frac{1}{2}\sin(x+y)$ B] $\frac{1}{2}\sin(x+y)$ C] $\frac{1}{2}\cos(x+y)$ D] None	
10	The particular integral of $(D^2 - D'^2) z = Cos(x + y)$ is	1
10	A] $x \cos(x + y)$ B] $\frac{x}{2} \cos(x + y)$ C] $\frac{x}{2} \sin(x + y)$ D] None	
	Short Answer Question	
Question	Ouestion Description	Expected
No.		Marks
1	Form the partial differential equations by eliminating the arbitrary constants:	2
	(i) $z = ax + by + ab$ (ii) $z = ax + a^2y^2 + b$ (iii) $z = (x^2 + a)(y^2 + b)$	
	Form the partial differential equations by eliminating the arbitrary functions:	2
2	(i) $z = f(x + it) + g(x - it)$ (ii) $z = f(x^2 - y^2)$	
	(iii) z = x + y + f(xy)	
3	Solve $\frac{\partial^2 z}{\partial y^2} = Sin(xy)$	2
4	Solve $\frac{\partial^2 z}{\partial x^2} + z = 0$, given that when $x = 0, z = e^y$ and $\frac{\partial y}{\partial x} = 1$.	2
5	Solve $p-q=1$	2

6	Solve $x^2p^2 + y^2q^2 = z^2$	2
7	Solve $z = px + qy + \sqrt{(1 + p^2 + q^2)}$	2
8	Solve $r = a^2 t$, Where the symbols have got their usual meaning	2
9	Classify the partial differential equation $2 \frac{\partial^2 z}{\partial x^2} + 4 \frac{\partial^2 z}{\partial x \partial y} + 3 \frac{\partial^2 z}{\partial y^2} = 0.$	2
10	Classify the partial differential equation $x^2 \frac{\partial^2 u}{\partial t^2} + 3 \frac{\partial^2 u}{\partial x \partial t} + x \frac{\partial^2 u}{\partial x^2} + 17 \frac{\partial u}{\partial t} = 100u.$	2

Long Answer Question		
Question No.	Question Description	Expected Marks
1	Solve the following partial differential equations (i) $pz - qz = z^2 + (x + y)^2$ (ii) $\frac{y^2z}{x}p + xzq = y^2$ (iii) $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$	5
2	Solve $s + p - q = z + xy$	5
3	Solve $(D - 3D' - 2)^3 z = 6e^{2x} \sin(3x + y)$	5
4	Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = y \cos x.$	5
5	Solve the linear partial differential equation $(D - D' - 1)(D - D' - 2)z = e^{3x-y} + x$	5
6	Use the method of separation of variables to solve the equation $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ given that $u(x, 0) = 4e^{-x}$	5
7	Use the method of separation of variables to solve the equation $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u \text{ given that } u(x, 0) = 6e^{-3x}$	5
8	A string is stretched and fastened to two points l apart. Motion is started by replacing the string in The form $y = Asin\left(\frac{\pi x}{l}\right)$ from which it is released at time t=0. Show that the displacement of a Point at a distance 'x' from one end at time 't' is given by $y(x,t) = Asin\left(\frac{\pi x}{l}\right)cos\left(\frac{\pi ct}{l}\right)$.	5

9	If the initial displacement and velocity of a string stretched between $x = 0 \& x = l$ are given by $y = f(x)$, determine the displacement 'y' of any point at a distance 'x' from one end at time 't'.	5
10	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x, 0) = 3sinn\pi x, u(0, t) = 0$ u(l, t) = 0, where 0 < x < l.	5

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Mathematics-III		
Title of the Unit: Function Of Complex Variable (Differential Calculus)	Unit No:-	V

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	Which out of the following is an analytic function? A] $f(z) = sinz$ B] $f(z) = z$ C] $f(z) = Im(z)$ D] $R(iz)$	1
2	If $f(z) = u + iv$ is an analytic function, then $f'(z)$ is equal to A] $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$ B] $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ C] $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}$ D] None	1
3	If the function $2x + x^2 + \alpha y^2$ is to be harmonic, then the value of α will be A] -1 B] 1 C] 2 D] None	1
4	The analytic function mapping the angular region $0 \le 6 \le \frac{\pi}{4}$ onto the upper half plane is A] z^2 B] $4z$ C] z^4 D] None	1
5	The mapping $w = z^2 - 2z - 3$ is A] Conformal within $ z = 1$ B] Not Conformal with $z = 1$ C] Not Conformal at $z = -1$ and $z = 3$ D] None	1
6	The fixed point of the mapping $w = \frac{3z+4}{z+5}$ are A] 2, 2 B] 2,-2 C] -2,-2 D None	1

7	The value of $\int \frac{3z^2+5z+2}{z-1} dz$, where C is $ z = \frac{1}{2}$, is	1	
	A] 0 B] $2\pi i$ C] πi D] None		
	Which out of the following is an analytic function?	1	
8	A] $f(z) = sinz$ B] $f(z) = z$ C] $f(z) = Im(z)$ D] $R(iz)$		
	If $f(z) = u + iv$ is an analytic function, then $f'(z)$ is equal to	1	
9	A] $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$ B] $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ C] $\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial y}$ D] None		
10	If the function $2x + x^2 + \alpha y^2$ is to be harmonic, then the value of α will be	1	
10	A] -1 B] 1 C] 2 D] None		
		•	The a
	Short Answer Question		plane
			A] z²
0	The mapping $w = z^2 - 2z - 3$ is	E	
No.	A] Conformal within $ z = 1$ B] Not Conformal with $z = 1$ C] Not Conformal	Marks	
	at $z = -1$ and $z = 3$ D] None		
	The fixed point of the mapping $w = \frac{3z+4}{z+5}$ are	2	
1	A] 2, 2 B] 2,-2 C] -2,-2 D None		
	The value of $\int \frac{3z^2+5z+2}{z-1} dz$, where C is $ z = \frac{1}{2}$, is	2	
2	A] 0 B] $2\pi i$ C] πi D] None		
3	Find the image of $ z - 2i = 2$, under the transformation $w = \frac{1}{z}$	2	
4	If $u = e^{ax} \cos y$ is harmonic, then find a.	2	
5	CR equations in polar form are	2	
6	Find the image of the line $y = 0$ under the transformation $w = \frac{1}{z}$.	2	
7	If $u = cosax.sinhy$ is harmonic, then find a	2	
8	Show that $u = y^2 - x^2$ is harmonic function.	2	

9	Find the Taylors' series for $f(z) = e^z$ about $z = 2$.	2
10	A mapping $w = f(z)$ is said to be conformal if	2

	Long Answer Question		
Question No.	Question Description	Expected Marks	
1	Determine $f(z) = \frac{z}{ \overline{z} }$ is analytic or not?	5	
2	Find an analytic function $f(z)$ such that: Re $[f'(z)] = 3x_2 - 4y - 3y_2 \& f(1+i) = 0$.	5	
3	Find analytic function f (z) for each of the following where f (z) =u+iv. If $v(r, \theta) = (r - \frac{1}{r}) \sin \theta$, $r \neq 0$	5	
4	Find analytic function f (z) for each of the following where f (z) =u+iv. $2u + v = e^{x} (cosy - siny)$	5	
5	Prove that function is harmonic function & find its harmonic conjugate & also corresponding analytic function $f(z)$. $u(r,\theta) = r^2 \cos 2\theta$.	5	
6	Prove that function is harmonic function & find its harmonic conjugate & also corresponding analytic function f (z). $u = log\sqrt{x^2 + y^2}$.	5	
7	Find the image of the square with vertices: $(0,0),(2,0),(2,2)$ and $(0,2)$ under the transformation $w = (1+i).z + (2+i)$	5	
8	Find the image of the lines : i) $x = y + 1$ ii) the line joining the points $A(1+i)$ to $B(2+3i)$ in Z-plane under the transformation $w = \frac{i}{z}$	5	
9	Find the image of the circle $ z - 3i = 3$ under the transformation $w = \frac{1}{z}$	5	
10	Expand $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ for $1 < z+1 < 3$	5	

Marathwada Institute of Technology, Aurangabad

Department of Basic Sciences and Humanities

Title of the Subject: Engineering Mathematics-III		
Title of the Unit: Function Of Complex Variable (Integral Calculus)	Unit No:-	VI

Multiple Choice Questions		
Question No.	Question Description	Expected Marks
1	Residue of $f(z) = \frac{cosz}{2}$ is A] 0 B] 1 C] 2 D] None	1
2	The critical point of the transformation $w = (z - a)(z - b)$ is A] $\frac{a-b}{2}$ B] $\frac{b-a}{2}$ C] $\frac{a+b}{2}$ D] None	1
3	The image of $ z + 1 = 1$ under the mapping $w = \frac{1}{z}$ is A] $2u - 1 = 0$ B] $2u + 1 = 0$ C] $2v + 1 = 0$ D] None	1
4	The function $w = logz$ is analytic everywhere except at A] $z = 0$ B] $z = 1$ C] $z = 2$ D] None	1
5	The singularity of $f(z) = \frac{z}{(z-2)^2}$ is A] Z = 3 B] Z = C] Z = 0 D] None	1
6	The of the function $f(z) = \frac{z^2}{(z-2)^2(z+3)}$ are A] $z = 2, -3$ B] $z = 2, 3$ C] $z = -2, -3$ D] None	1
7	The transformation $w = cz$ consists of	1

	A] magnification and rotation B] Translation C] Inversion D] None	
8	The invariant point of $w = \frac{1+z}{1-z}$ are A] $z = \pm i$ B] $z = \pm 1$ C] $z = 0$ D] None	1
9	The singular point of $\frac{\cos \pi z}{(z-1)(z-2)}$ are A] 0, 1 B] 1, 2 C] -1, -2 D] None	1
10	The pole of $\frac{(z-1)^2}{z(z-2)}$ are at A] $z = 1,2$ B] $z = 0,-2$ C] $z = 0,2$ D] None	1
	Short Answer Question	I
Question No.	Question Description	Expected Marks
1	Evaluate by using Cauchy's integral theorem $\oint \frac{3z^2+2}{z-1} dz$	2
2	Evaluate $\int_0^{1+i} z^2 dz$ along a line $y = x$.	2
3	Evaluate $\oint z ^2 dz$ where C is upper half of the circle: $ z = 2$	2
4	If c is $ z = 1$ then evaluate $\int \frac{e^{-z}}{z^2} dz$	2
5	Evaluate $\oint \frac{e^z}{(z-1)(z-4)} dz$ where $C z = 2$:	2
6	Find the sum of residues of $f(z) = \frac{\sin z}{z \cos z}$ at its poles inside the circle $ z = 2$.	2
7	Find the residue of $f(z) = \frac{1}{z(z-i)}$ at $z=i$.	2
8	Find the residue at each point of $\frac{1}{z^2+4}$	2
9	Determine the poles and also find the order of each pole for $f(z) = \frac{z}{(z-a)^2(z-b)}$	2
10	Find the residues at each pole of following. a) $f(z) = \frac{1}{(z+1)^2}$ b) $f(z) = \frac{4z}{z(z-1)^2}$	2

	Long Answer Question	
Question No.	Question Description	Expected Marks

1	Evaluate $\oint \frac{z+2}{(z-2)^2(z+1)} dz$ where c is the circle $ z = 3$.	5
2	Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path (i) $y = x$ (ii) $y = x^2$.	5
3	If $f(z) = \frac{2z-1}{z}$ the find the value of integral $\int f(z) dz$ where C is the path of lower half of the circle $ z = 3$ taken in anticlockwise direction	5
4	Evaluate $\oint tanz. dz$ where c: $ z = 2$ by using Cauchy's residue theorem	5
5	Evaluate $\oint \frac{\sin z}{z\cos z} dz$ inside a circle $ z = 2$, by Cauchy's residue theorem	5
6	Evaluate the integral by Cauchy's residue theorem $\oint \frac{2z^2+z}{z^2-1} dz$ where C: $ z-1 = 1$.	5
7	Evaluate $\oint \frac{z+1}{z^3-4z} dz$ where C: $ z+2 = \frac{3}{2}$ by Cauchy's integral formula.	5
8	Evaluate $\oint \frac{\sin z}{(z-1)^2(z^2-9)} dz$ where C: $ z-3i = 1$ by Cauchy's integral formula	5
9	Evaluate $\oint \frac{z^2}{z^4-1} dz$ where C is the (i) upper half of circle $ z = 1$ (ii) lower half of circle $ z = 1$.	5
10	Evaluate: $\int_{-\infty}^{2\pi} \frac{2}{d\theta} d\theta$	5
10	Evaluate $J_0 = \frac{1}{2 + \cos\theta} d\theta$	